References

[1]

F. Dörr, M. Schmid, L. Hammer, U. Diebold, and M. Riva. ViPErLEED package III: Data acquisition for quantitative low-energy electron diffraction. in preparation, 2024.

[2]

M. Schmid, F. Kraushofer, A. M. Imre, T. Kißlinger, L. Hammer, U. Diebold, and M. Riva. ViPErLEED package II: Spot tracking, extraction and processing of I(V) curves. Phys. Rev. Research (submitted), 2024. arXiv:2406.18413. doi:10.48550/arXiv.2406.18413.

[3]

F. Kraushofer, A. M. Imre, G. Franceschi, T. Kißlinger, E. Rheinfrank, M. Schmid, U. Diebold, L. Hammer, and M. Riva. ViPErLEED package I: Calculation of I(V) curves and structural optimization. Phys. Rev. Research (submitted), 2024. arXiv:2406.18821. doi:10.48550/arXiv.2406.18821.

[4]

T. Fauster, L. Hammer, K. Heinz, and M. A. Schneider. Surface Physics: Fundamentals and Methods. De Gruyter Oldenbourg, June 2020. ISBN 978-3-11-063669-7. doi:10.1515/9783110636697.

[5]

K. Heinz. Electron Based Methods: 3.2.1 Low-Energy Electron Diffraction (LEED). In Surface and Interface Science, chapter 3.2, pages 93–150. John Wiley & Sons, Ltd, 2013. doi:10.1002/9783527680535.ch4.

[6]

V. Blum and K. Heinz. Fast LEED intensity calculations for surface crystallography using Tensor LEED. Comput. Phys. Commun., 134:392, 2001. doi:10.1016/S0010-4655(00)00209-5.

[7]

P. J. Rous, J. B. Pendry, D. K. Saldin, K. Heinz, K. Müller, and N. Bickel. Tensor LEED: A Technique for High-Speed Surface-Structure Determination. Phys. Rev. Lett., 57:2951, 1986. doi:10.1103/PhysRevLett.57.2951.

[8]

P. J. Rous and J. B. Pendry. The theory of tensor LEED. Surf. Sci., 219:355, 1989. doi:10.1016/0039-6028(89)90513-X.

[9]

M. Kottcke and K. Heinz. A new approach to automated structure optimization in LEED intensity analysis. Surf. Sci., 376:352, 1997. doi:10.1016/S0039-6028(96)01307-6.

[10]

P. J. Rous. The tensor LEED approximation and surface crystallography by low-energy electron diffraction. Prog. Surf. Sci., 39:3, 1992. doi:10.1016/0079-6816(92)90005-3.

[11]

J. Rundgren. Elastic electron-atom scattering in amplitude-phase representation with application to electron diffraction and spectroscopy. Phys. Rev. B, 76:195441, 2007. doi:10.1103/PhysRevB.76.195441.

[12]

K. Momma and F. Izumi. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr., 44:1272, 2011. doi:10.1107/S0021889811038970.

[13]

P. Ferstl, T. Schmitt, M. A. Schneider, L. Hammer, A. Michl, and S. Müller. Structure and ordering of oxygen on unreconstructed Ir(100). Phys. Rev. B, 93:235406, 2016. doi:10.1103/PhysRevB.93.235406.

[14]

K. Johnson, Q. Ge, S. Titmuss, and D. A. King. Unusual bridged site for adsorbed oxygen adatoms: Theory and experiment for Ir(100)–(1×2)–O. J. Chem. Phys., 112:10460, 2000. doi:10.1063/1.481709.

[15]

F. Kraushofer, Z. Jakub, M. Bichler, J. Hulva, P. Drmota, M. Weinold, M. Schmid, M. Setvín, U. Diebold, P. Blaha, and G. S. Parkinson. Atomic-scale structure of the hematite ɑ-Fe₂O₃(1−102) “r-cut” surface. J. Phys. Chem. C, 122:1657, 2018. doi:10.1021/acs.jpcc.7b10515.

[16]

G. Franceschi, F. Kraushofer, M. Meier, G. S. Parkinson, M. Schmid, U. Diebold, and M. Riva. A model system for photocatalysis: Ti-doped ɑ-Fe₂O₃(1−102) single-crystalline films. Chem. Mater., 32:3753, 2020. doi:10.1021/acs.chemmater.9b04908.

[17]

E. N. Maslen, V. A. Streltsov, N. R. Streltsova, and N. Ishizawa. Synchrotron X-ray study of the electron density in ɑ-Fe₂O₃. Acta Crystallogr. B, 50:435, 1994. doi:10.1107/S0108768194002284.

[18]

T. Kißlinger, M. A. Schneider, and L. Hammer. Submonolayer copper telluride phase on Cu(111): Ad-chain and trough formation. Phys. Rev. B, 104:155426, 2021. doi:10.1103/PhysRevB.104.155426.

[19]

P. K. George and E. D. Thompson. Debye temperature of nickel from 0 to 300 degrees K. J. Phys. Chem. Solids, 28:2539, 1967. doi:10.1016/0022-3697(67)90040-6.

[20]

G. Kresse and J Hafner. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B, 48:13115, 1993. doi:10.1103/PhysRevB.48.13115.

[21]

J. B. Pendry. Reliability factors for LEED calculations. J. Phys. C, 13:937, 1980. doi:10.1088/0022-3719/13/5/024.

[22]

V. Blum, L. Hammer, W. Meier, K. Heinz, M. Schmid, E. Lundgren, and P. Varga. Segregation and ordering at Fe1-xAlx(100) surfaces – a model case for binary alloys. Surf. Sci., 474:81, 2001. doi:10.1016/S0039-6028(00)00987-0.

[23]

M. Sporn, E. Platzgummer, S. Forsthuber, M. Schmid, W. Hofer, and P. Varga. The accuracy of quantitative LEED in determining chemical composition profiles of substitutionally disordered alloys: a case study. Surf. Sci., 416:423, 1998. doi:10.1016/S0039-6028(98)00596-2.

[24]

J. Rundgren. Optimized surface-slab excited-state muffin-tin potential and surface core level shifts. Phys. Rev. B, 68:125405, 2003. doi:10.1103/PhysRevB.68.125405.

[25]

J. Rundgren, B. E. Sernelius, and W. Moritz. Low-energy electron diffraction with signal electron carrier-wave wavenumber modulated by signal exchange-correlation interaction. J. Phys. Commun., 5:105012, 2021. doi:10.1088/2399-6528/ac2c31.

[26]

S. Y. Tong. Theory of low-energy electron diffraction. Prog. Surf. Sci., 7:1, 1975. doi:10.1016/0079-6816(75)90010-6.

[27]

M. A. Van Hove and S. Y. Tong. Surface Crystallography by LEED. Volume 2 of Springer Series in Chemical Physics. Springer Berlin Heidelberg, Berlin, Heidelberg, 1979. ISBN 978-3-642-67197-5 978-3-642-67195-1. doi:10.1007/978-3-642-67195-1.